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A numerical technique for predicting microstructure in liquid
crystalline polymers

by JOHN HOBDELL and ALAN WINDLE*

Department of Materials Science and Metallurgy, Cambridge University,
Pembroke Street, Cambridge CB2 3QZ, UK.

(Received 9 December 1996; accepted 7 March 1997)

A numerical technique has been developed to model texture in nematic liquid crystals. The
technique differentiates between splay, twist and bend distortions and includes splay—splay
compensation. The technique is tested by the simulation of the Fréedericksz transition and
by the determination of minimum energy director fields for specific boundary conditions. To
model the bulk, periodic boundary conditions are imposed. The effect of elastic anisotropy
on disclination character has been investigated by terminating simulations before all the
defects have been annihilated. With a low twist constant, twist disclinations are observed;
with a high twist constant, wedge disclinations are observed. With a low twist constant and
high splay constant, realistic for polymeric liquid crystals, features observed experimentally

are simulated.

1. Introduction

Thermotropic liquid crystalline polymers (TLCPs)
have great potential as structural materials. They have
high strength and stiffness in the direction of molecular
alignment and their low melt viscosity facilitates pro-
cessing [1]. Without resort to large aligning fields,
moulded samples show inhomogeneities either in the
form of variations in the direction of alignment across
the sample or as topological defects. An understanding
of such features is crucial to the further utilization of
these promising materials.

The simplest type of liquid crystals are nematic liquid
crystals. In the nematic mesophase, the molecules exhibit
long range orientational order without any long range
translational order; the molecules tend to align, but their
centres of mass do not lie on a regular lattice. The mean
molecular orientation can be described by a uniaxial
tensor termed the ‘director’. At larger size scales the
orientation of the director itself may vary and it is
such variations which appear as microstructural textures
and defects.

The elastic theory of curvature distortions was
developed by Oseen [2] and Frank [3]. In the absence
of an applied orienting field, the free-energy density is
given by equation (1).

1
F= ;[k“ (V)24 ky(n Yan) + ky3(n AV AR)?]

(1)

* Author for correspondence.

where n is a unit vector parallel everywhere to the
director field and k,;, k5, and k33 are the three Frank
elastic constants associated with splay, twist and bend
distortions, respectively.

In small molecule nematics, the elastic constants are
often taken to be equal, allowing a significant simpli-
fication of equation (1). In polymeric nematics this is
not a reasonable assumption. In TLCPs, the splay
constant is the highest of the three elastic constants and
the twist constant is the lowest. The splay constant is
large in semi-flexible polymeric nematics because splay
distortion requires a segregation of chain ends. For a
long chain molecule there are very few chain ends per
unit volume and so the very particular organization of
chain ends necessary to allow any splay distortion is
entropically unfavourable [4]. Recent experimental
studies have suggested that there may be as much as a
factor of ten difference between the splay and bend
constants and the bend and twist constants in some
TLCPs [5]. In addition to the splay, twist and bend
elastic constants, two other elastic constants exist, k;
and k,4. This paper will deal primarily with the first
three elastic constants, but the implications of the ky,
or ‘saddle-splay’, constant will be explored.

In order to probe the effect of unequal elastic con-
stants on microstructural defects and textures we have
developed a numerical technique which forms the basis
of this paper which is arranged as follows. Section 2
presents details of the numerical technique itself; §3
shows tests of the technique against analytical results
(where these are available); §4 presents the results of

0267-8292/97 $12-:00 © 1997 Taylor & Francis Ltd.
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simulations, and their comparison with experiment, and
§5 is a discussion of the results.

2. Numerical technique

Several workers have developed mesoscale methods
for simulating texture and texture evolution in liquid
crystals. These methods have either relied on the equal
constant approximation [6-8], have been restricted to
two dimensions [9] or have adopted both limitations
[10] and none has addressed the issue of splay—splay
compensation where splay on one plane is opposite to
splay on a perpendicular plane [4]. In order to simulate
polymeric nematics in three dimensions, it is necessary
to distinguish between the three types of distortion in
three dimensions. The method we have adopted involves
dividing the geometry of interest into an array of cubic
cells, as shown in figure 1. Each cell stores a director to
represent the local orientation. Since the materials are
deep in the nematic phase, the local order parameter is
considered to be fixed and the local director is stored
as a vector whose direction is parallel to the local
orientation. Clearly a vector does not have the correct
uniaxial symmetry for a nematic director, which is
technically a tensor, and this complication is overcome
in the calculation of the distortion energy described later.

2.1. Program structure

The first stage is to initialize the model. Either the
directors are all aligned to simulate a monodomain or
set to random orientations to simulate an isotropic
condition. Directors in cells forming the boundaries are
fixed at specific orientations, usually either parallel to
the boundary to simulate planar boundary conditions
or perpendicular to the boundary to simulate homeo-
tropic boundary conditions. Periodic boundary con-
ditions may also be simulated by considering the cells
down one face of the model to have the cells on the
opposite face of the model as their external neighbours.

Following initialization, an annealing algorithm is
used to reduce the total energy of the system. It involves
picking cells at random and assigning a randomly chosen

Each cell is associated with
a DIRECTOR, here
arranged around a strength
+1/2 disclination.

The DIRECTOR is the
symmetry direction of the
molecules in the cell.
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Figure 1. The model. Each cubic cell stores a director which
is parallel to the average orientation of the long axes of
the molecules within the cell.

trial orientation to the director stored therein. The
difference in the total system energy between the existing
orientation and the trial orientation is found using the
energy calculation described in §2.2. A Metropolis
[11] algorithm is used to decide whether to accept or
reject the trial orientation. If the energy with the trial
orientation is lower than that calculated with the existing
orientation, then the trial orientation is accepted. If,
however, the energy with the trial orientation is higher
than that with the existing orientation, then the new
trial orientation is accepted with a probability given by
equation (2).

P=exp[— B(Eyj— Eqa)] (2)

In equation (2), B=1/kT, where k is the Boltzmann
constant and T is the ‘temperature’. The ‘temperature’
in this case is not the thermodynamic temperature
but is part of the numerical technique. The technique
may be used in two modes. If the global minimum is
sought, then the ‘temperature’ is gradually lowered from
a high value towards zero. The effect of an elevated
‘temperature’ is to allow the system to climb out of local
minima. However, too high a ‘temperature’ will mean
the system is near to a nematic—isotropic transition
where it ceases to be a reasonable assumption to have
a fixed order parameter and there is a high degree of
fluctuation in the orientations of the directors.

As the system tends towards a minimum more and
more of the trial orientations are rejected and there is a
tendency for the algorithm to become very inefficient.
The ratio of accepted changes to trials is termed the
acceptance ratio. In order to increase the acceptance
ratio it is necessary to reduce the angular variation of
the trial orientations. It is a simple matter to define
a cone of semi-angle y about the current director
orientation and select a trial orientation with a uniform
probability from within this cone. The smaller the
semi-angle, y, the higher the probability of acceptance.
An acceptance ratio of 50 per cent is widely chosen (for
a discussion of this see [ 12]) and to maintain this value
a feedback mechanism is included. The acceptance ratio
is calculated every 500 trials and the cone semi-angle is
altered according to the scheme in equation (3).

Calculated acceptance ratio

= : : 3
Tew Required acceptance ratio 4 (3)

An additional check ensures that the cone semi-angle
does not vary by more than a factor of 10 after any one
set of 500 trials.

The second mode of running the simulations is
to fix the ‘temperature’ at a value well below the
nematic—isotropic transition and to select every new trial
orientation from an isotropic distribution. Simulations
are run from a randomized initial state with periodic
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boundary conditions allowing the evolution of textures
via the annihilation of defects. It is possible to examine
the character of the defects which occur during the
evolution as a function of the elastic constants. For these
simulations, the effect of the Metropolis algorithm is to
apply a fluctuation to the directors to aid the annealing
process. It is, in effect, a low ‘temperature’ Monte Carlo
simulation.

The question of the size of the cells is of some
importance. As will be shown later, the model accurately
reproduces continuum results. When simulations are
annealed to the minimum energy state, at zero Monte
Carlo temperature, the results are in the continuum limit
and increasing the number of cells merely increases the
resolution. If the Monte Carlo temperature is not zero,
then the simulations will include the effect of thermal
fluctuations. In the simulations presented here, all the
results are produced with a very low Monte Carlo
temperature and the effect of the fluctuations is very
small. Such small fluctuations are included purely to
prevent simulations locking-up in local minima.

There is a relationship between the size of the cells
and the Monte Carlo temperature. If the cells are of
molecular scale, then the technique may be used to
simulate a nematic—isotropic transition in much the
same way as Lebwohl and Lasher did [13]. At this size
scale the interaction energy must be considered in terms
of an intermolecular potential rather than a distortion
free energy. If the cell size is increased, then each cell
may be considered to contain more than a single
molecule and the effect of thermal fluctuations (at the
same value of kT per cell) will be reduced. As the size
of each cell is increased further, the effect of thermal
fluctuations is reduced and the system will tend towards
the continuum limit where thermal fluctuations are
negligible. For a given distortion, the distortion free
energy scales linearly with the distance across which the
distortion occurs. This statement implies that the coeffi-
cient, B, in equation (2) may be interpreted either as a
reciprocal temperature or as a size scale. In this work
we consider values of g which are large and interpret
this to be a large size scale, approaching the continuum
limit. In future work the effect of smaller values of g will
be considered as a way of bridging the gap between
atomistic and continuum size scales.

2.2. Energy calculation
The calculation of the energy is based on Frank’s
equation (equation (1)) for the free energy associated
with a distorted director field, n, in a liquid crystal. By
basing the calculation on this equation it is possible to
separate the contributions from splay, twist and bend

distortions. The equation is expanded into a set of
partial derivatives as shown in equations (4) to (6).

6}1Y % On;

(Vm)?= o (4)
on on on:
2 _.Z X Zz
n n]*= _
[n (Van] oo )T o o
+n, — 5
" ( ox Oy ) )
(A )2 ] ony  Ony Ony  On;
n n))’= — _— ) —n. _
AVA 1" ox Oy " 0z ox
on. % % ony
+jil| n. — — ny —
oy Oz ox oy
on, On, on, On
+i) nof T — —ny -
Oz ox 0 oz
(6)

Note that equations (4) and (5) are scalar and the result
may simply be squared to give the distortion to insert
into equation (1), while equation (6) produces a vector
and it is its magnitude squared that is inserted into
equation (1).

The energy is calculated for a single cell. Firstly, the
cell is broken down into eight corners. Around each
corner are three neighbours as shown in figure 2. For
each corner, the three neighbours are used to calculate
values for the splay, twist and bend distortions by
approximating the partial derivatives by forward differ-
ences. For example, the change in the x component of
the director with respect to x is given by equation (7):

Onx  nx(it1,j, k) = nx(i, j, k)

7
Ox AL 7
AL
il
(4,j+1.,k)
..... Y
—

(i,j.k+1)

/ RESRAS

zZ

X

Figure 2. Around each cell there are eight corners; around
each corner are three neighbouring cells. In the diagram,
the three neighbours shown are along the positive
coordinate axes.
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The change in the y component of the director with
respect to z is given by equation (8):

%_ny(i,j,k-i-l)—ny(i,j,k) g

oz AL ®)
The other seven partial derivatives found in equations
(4) to (6) are approximated similarly.

It is necessary to use forward differences rather
than central differences since it is a requirement of the
algorithm to have a dependence on the orientation of
the director stored in the central cell. In central differ-
ences, the derivative at a point is given by the difference
between the value in the cell to the left and the value in
the cell to the right. In the approach adopted here, the
derivative is approximated by the difference between the
cell to one side and the central cell. In order to ensure
that cells to both sides of the central cell have equal
weighting, splay, twist and bend distortions are calcu-
lated for all eight sets of three neighbours around the
corners of the central cell and the eight values are
averaged. Energies are obtained by multiplying each
distortion by the relevant elastic constant.

On changing the orientation of the central director,
the energies calculated for the six nearest neighbours
will change. In order to calculate the change in the
system energy as a result of changing the orientation of
a single director it is necessary to recalculate all terms
which include the orientation of that director. In fact
this involves recalculating all eight corners of the
central cell and four of the corners of each of the six
neighbouring cells.

One complication is the inability of vectors to describe
nematic symmetry. This is dealt with by inserting a
simple check to determine whether two vectors make an
acute angle with each other or not. If the angle is greater
than 90° then one of the vectors is flipped through 180°
so that the angle is less than 90°. This does give a
discontinuity in the gradient of the energy function
whenever neighbours are at 90° to each other, but since
this will only happen at the cores of disclinations where
low angle elasticity is inapplicable anyway, it is accepted
in this work.

An alternative way of dealing with the problem of the
nematic symmetry is to describe the director by a second
rank tensor rather than a vector. This approach has
been used by the authors [ 14] with only splay distortion
considered and, more recently, by Gruhn and Hess [ 15].
These workers have presented an elegant Monte Carlo
algorithm which distinguishes between the three elastic
constants with a tensor description of the director field.
Although their description eliminates the need for the
flipping algorithm utilized in this work and is, in
principle, extendable to three dimensions, Gruhn and

Hess have only presented results for two dimensional
simulations.

2.3. Splay—splay compensation and XK,

One of the important advances of the method
presented here is the correct handling of splay-splay
compensation (figure 3). Splay distortion is described
mathematically by the divergence term in Frank’s
equation. If the divergence of the director field on one
plane is in the opposite direction to a divergence of
similar magnitude on a perpendicular plane then the
total divergence will be zero. This situation is known as
splay—splay compensation. Previous techniques have
not dealt with splay—splay compensation because only
pairwise interactions between neighbours have been
considered. For example the sin? 0 algorithm used by
Bedford et al. [16] calculated the angular difference
between a central director and its six neighbours
individually. The sines of the angular differences were

:

T

VARIRYAY

&/\;/\/
NN T/

P

-

Nl
ML

Figure 3. The diagram shows the director field for an idealised
escaped — 1 disclination line. The nail convention is used
to represent directors pointing out of the plane. The points
of the nails point out of the plane and the lengths of the
shafts represents the components of the directors lying in
the plane of the page. The centre of the diagram is a
region of splay-splay compensation; the director field in
the x-z plane splays outwards while the director field in
the y-z plane splays inwards. The centre of the diagram
is also a region of opposing twist distortions: along the
line x =y the twist is in a clockwise sense while along
the line x = —y the twist is in an anti-clockwise sense.
Calculations for this idealized geometry show that the
splay, twist and bend distortions are all zero at the centre
of the diagram but that the saddle-splay distortion takes
its largest value there.
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found and squared before the contributions from each
of the six neighbours were added. The result was that a
splay—splay compensated region would have the same
energy calculated as an equivalent pure splay situation
where all the divergence was in the same direction.

An example of a splay-splay compensated structure
is shown in figure 13. It is in fact a cross-section of an
idealized escaped —1 line disclination. Calculations
show that the centre of such a linear texture exhibits
zero splay distortion since it is splay—splay compensated,
it also exhibits zero twist distortion. However, the centre
of the escaped —1 line is clearly not a region of zero
distortion and the distortion in this situation is
accounted for by the inclusion of the saddle-splay or i,
term (equation (9)) in Frank’s equation (equation (1)).

1
Fsaddle—splay =- ;k24[v (n X VX n+ “V n)] (9)

Although this term is often neglected it may be important
in some situations. In polymeric nematics, where splay
distortion is prohibited by the lack of chain ends, saddle-
splay distortion may be the only way that any divergence
can be accommodated. In the work presented here we
have not included the k,, term, so perfectly splay—splay
compensated geometries will have zero energy associated
with them. Nevertheless, the model does have the facility
for including this term and its role will be examined in
future studies.

3. Testing the technique
In order to have any confidence in predictions made
using this technique, a number of tests have been per-

Figure 4. The range of Poincaré
point defects. The director
fields are illustrated by stream-
lines which are parallel to the
director; for clarity, only a
selection of the streamlines is
shown. Each diagram is set
with the rotational symmetry
axis of the defect lying approxi-
mately from the bottom left to
the top right. The equatorial
plane is perpendicular to this.
(@) The Hedgehog or Noeud
point; (b) the Foyer point; (c) the
Centre point; (d) the Col-foyer
point; (e) the Col point.

formed. This section describes testing of the method for
special situations where the component distortions may
be calculated analytically and for geometries where the
minimum energy director fields are known for different
sets of elastic constants.

3.1. Energies of point defects

A suitable set of geometries, used to test the calculation
of the component distortions, was the range of Poincaré
point defects [17, 18] shown in figure 4. These were
chosen for a number of reasons. Firstly, analytical values
of the energies may be calculated for each geometry.
Secondly, the different defects all have very different
amounts of splay, twist and bend distortion associated
with them. Finally, the Col defect (sometimes referred
to as the Hyperbolic Hedgehog) has a region of complete
splay—splay compensation around its equatorial plane
and so the correct determination of its energy implies
the correct inclusion of splay—splay compensation in the
calculations.

Table 1 shows a comparison of the energy values
calculated for the model using a lattice of size 100°. The
energy of each of the defects is calculated for a spherical
volume of radius R and is expressed in terms of this
radius and the elastic constants. For example the
analytical value for the distortion energy of a Noeud (or
Hedgehog) point defect is given by:

ENoeud = 81k 1 R (10)

The energy for a Col (or Hyperbolic Hedgehog) is
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Table 1. Energies of point defects.

Analytical energy Modelled energy

Splay Twist Bend Splay Twist Bend
Point ki R ky R kiR Total ki R ky R k3R Total
Col 5-027 0-000 3351 8-378 5-042 0-000 3322 8365
Col-foyer 2107 4-189 4-536 10-831 2113 4-166 4-576 10-854
Centre 3351 8378 5-027 16-755 3-384 8331 5-149 16-864
Foyer 16:324 4-189 2-166 22:679 16455 4-166 2-254 22-874
Noeud 25-133 0-000 0-000 25-133 25-325 0-000 0-039 25-364
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Figure 5. A Col type point defect. The streamlines in the
main diagram follow the director trajectory. The inset

Of particular note is the correct calculation of the
energy of the Col point defect. This defect contains
a region of splay-splay compensation around its
equatorial plane. Figure 5 shows a diagram of a Col
point defect. In the x-y plane of the defect the divergence
of the director field is directed outwards, but along the
x axis of the x-z plane the divergence is inwards. The
equatorial (x-y) plane is thus a region which exhibits
splay—splay compensation. Nevertheless, the energy
calculated using the new algorithm is correct and agrees
with the analytical result, confirming that the model
handles correctly this aspect of the distortion field.

3.2. Parallel plates simulations
For the modelling technique to have any useful
predictive value it must be capable of finding director
fields which minimize the Frank free energy. This is a
variational problem and the usual approach to finding
such minima is to solve the Euler-Lagrange equation
for the geometry of interest. The literature contains a

NSNSV VT 77777777777 7TTT 1 VANSNS~ few examples of situations where the Euler—Lagrange
NNNNANANNVN VS 27770 727272770881 VAV NNNNN : : : . :
NN R A N A BN equation hag been s'olved with differing elastic constants,
SN N N I s i 2 3 B I SNENENENENEN and comparison with these has been used as a further
/ 7/ NN . .
::::::t : 5£/:::: ::::/;; : t:\\::: test of the numerical technique presented here.
———= \CI)/ atabaiabe l mialalat el /(l)\ SS = One particular example for which analytical solutions
e/ ] N N 1 LoZCIOX were presented by Meyer [4] is shown in figure 6. The
- r s/ IANNSSSS| NN\ | /2 . . :
S NN B NN AR geometry is that'o‘ftwo parallel plates with homeotropic
cr s 270 L VANANSNSNSSN INSSSNNNN L /s boundary conditions at one plate and homogeneous
s 77770 1T VNNNNNN NNNNNNLN VY212 rre
/77777 T VANNNNNN NNANANANNYVN LV 72720
/70T T AVNNANNNN NWNNNNNL VY V27727

A:
[ l

diagrams show the director fields on the equatorial plane Bend 6=0 I'
and on a perpendicular vertical plane. As can be seen, the /
divergence on the equatorial plane is away from the centre /
while the divergence on the vertical plane is towards the /
centre; the equatorial plane is thus a region which exhibits //

splay—splay compensation.

given by:

ky | 2k
Ecy=8nR f+Tﬁ (11)

e
Splay -1 8=n2

Figure 6. A splay-bend layer produced by hybrid boundary
conditions (after Meyer [4]).
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boundary conditions at the other. Solutions exist for
equal constants, high splay constant and high bend
constant.

The director must change in orientation by 90° from
one plate to the other. The way that the angle varies
depends on the ratio of the splay and bend elastic
constants. If the elastic constants are equal, the director
varies smoothly (d6/d:z is constant). If the splay constant
is very much higher than the bend constant then all the
splay distortion is spread between the plates, while the
bend distortion is concentrated near to the homeotropic
boundary. If the bend constant is the largest then the
reverse occurs; the bend distortion being spread between
the plates, while the splay is concentrated near to the
homogeneous boundary. This behaviour is an example
of a general rule: the higher the elastic constant for a
particular distortion, the more spread out that type of
distortion will be.

The analytical results for the variation of the angle of
the director, 0-, for two plates separated by a distance
d are as follows.

For k|| = k;3:
92=£(1—5) (12)
2 d
For k| >k;:
@:aﬁﬂ(;) (13)
For k3;>>k |, :

92=sin_1(1—§) (14)

In deriving these solutions, Meyer assumed (reasonably)
that the distortion would be two dimensional with the
director remaining in the plane defined by the homeo-
tropic and homogeneous boundary conditions and that
the director orientation, 6- is a function only of z.

By using the numerical technique, it has been possible
to simulate this geometry in three dimensions. An
advantage of this approach is that no assumptions are
made as to the nature of the solutions. If a solution
involving some twist distortion is favoured, then it is
not precluded by the way the simulation is set up.
Simulations were run from random initial conditions in
the simulated annealing mode to anneal the system to
its minimum energy state. Figure 7 shows the results of
the simulations for the three situations of a high splay
constant, equal constants and a high bend constant. It
is clear that, when the splay constant is high, the splay
distortion is spread out and that the bend distortion is
concentrated near to the homeotropic boundary (z =d);
when the bend constant is high the bend distortion is

spread out and the splay distortion is concentrated near
to the homogeneous boundary (z=0); with equal con-
stants the director varies smoothly from one boundary
to the other.

A comparison between the analytical and the
simulated results is plotted in figure 8 with &k, >>ks;3
being simulated by setting k,; =1, k,, =1 and k;;=0;
ky<<ky; 1s simulated by setting k;; =0, k=1 and
ki3 =1, and equal constants are simulated by setting
ki =ky=ks;=1. The agreement with the analytical
results is excellent, giving further confidence in the
numerical technique. The technique may be used to find
solutions for any ratio of elastic constants. The solutions
occupy the region bounded by the limiting cases shown
in figure 7.

3.3. Freedericksz transition

An additional test of the technique has been to
simulate the Fréedericksz transition [19]. In the
Fréedericksz transition, samples are typically constrained
by two parallel plates. The surfaces of the plates impose
either homeotropic or homogeneous boundary con-
ditions which define the direction of alignment at zero
applied field. By the application of a critical field the
alignment begins to change from a monodomain aligned
in the direction defined by the boundaries towards the
direction favoured by the applied field. The onset of the
transition involves only one type of distortion and so
the critical field is dependent only on the elastic constant
associated with that distortion. By suitable choice of
geometry, all three distortions may be probed. For equal
elastic constants, all three geometries should show the
transition at the same critical field. Figure 9 shows a
schematic of the three geometries.

It is simple to simulate the Fréedericksz transition
using the numerical technique described here. The effect
of a magnetic field is included via an additional energy
term as shown in equation (15), where yx, is the aniso-
tropy in the diamagnetic susceptibility per unit volume,
H is the field strength and n is a vector parallel to the
director stored in a given cell.

1
Emagzgla(H n)’ (15)

The first test was to show that the transition occurred
at the same applied field for each geometry. Figure 10
shows the variation of the angle of the director on the
mid-plane of the simulation as a function of applied field
strength for the splay geometry. The graphs for the twist
and bend geometries are identical. According to theory
(see for example [20]), the transition should occur at a
field strength given by equation (16).

k2
m=;(;) (16)
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Splay Geanetry

Figure 7. Minimum energy direc- @bt rrhme e eyt i1
tor fields for parallel plates with O A A A A A A A A A 1 1 N A A U R | A R A A A
homogeneous boundary condi- A A e A A N
tions at z =0, and homeotropic i;ji:ijiijﬁ;;;;;;;;;;;;;;;5;5;
The results shown are v shess |~ =22 S22 | ss s s s sy

) > i i | EA g g G GV AP | A A A A S A S S A 4
through a three dimensional S| | B | [N
(10X 10 %X 10) simulation with | — — — — ||« - e
fixed boundaries at z—=0 and |——— —— — —— - | | _________
z=d and periodic boundaries =
in the x and y directions. k” > k% k” k33 k” < k%
(@) Shows the variation of the
director across the sample for
a high splay constant; the splay
distortion is spread out and the
bend distortion is concentrated
near the :z=d boundary.
(b) Shows the variation for
equal constants; the director
varies uniformly. (¢) Shows the
variation for a high bend con-
stant; the bend distortion is
spread out and the splay distor-
tion is concentrated near the
z=0 boundary layer.
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Figure 8. The actual variation of © 30
the director angle across the D 40 F
: =
sample is plotted to compare =
simulated and  analytical 30
results. The lines represent the
analytical results in each case 20 -
while the points are the simu- 10 F
lated values. In the simulation
with k| >>k;, k5 was actually 0
set to zero; for the simulation 0 0.2 0.4 0.6 0.8 1
with &k <k;s, k;; was set to z/d
zero.
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Figure 9. Diagrams showing the three geometries of the Fréedericksz transition. S is the direction of monodomain alignment
imposed by the boundary conditions when there is zero applied field, # is the direction of the applied field. The diagrams
show the variation of the director between the two plates for a field strength which is significantly higher than the critical
field strength.
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Figure 10. Plot of 6,,,,, the angle 80 T
of the director on the mid-
plane, versus H, the magnetic 70
field strength, for the splay geo-
metry with equal elastic con- 60 |-
stants, k;, =k,, =k;3=k,. The @ 50
simulation was performed L
using a 1 X 1X 10 lattice (d= 5 40
9d,). The actual values for k, %
d, and y, were set to unity in g 30
the simulation. Each data point =
involved a calculation of 64 000 20
Monte Carlo trials per cell at
values of B increasing from 8 10
to 8x10%. The graph shows |,
excellent agreement between 0 0

the simulated and analytical
results; the transition occurs at
the theoretical critical field. The
curves for the twist and bend
geometries are identical and
have not been plotted.

where d is the separation of the plates and k is the
relevant elastic constant. Figure 10 shows the transition
occurring at exactly this field strength.

Once the critical field has been reached, further
increase of the field will cause the director to turn further
and further towards the field direction. Chandrasekhar
[20] has calculated how the director on the mid-plane
of the sample varies as a function of field strength.
Figure 10 shows a comparison of the analytical results
and the result of simulations using the numerical
technique.

Of further interest are simulations where the elastic
constants are changed with respect to each other. The
onset of the splay transition should depend only on the
value of the splay elastic constant and so should remain
unaltered by any change in the bend constant. However

Analytical —
Numerical ©

........................... 006D 1 1

04 06 08 1 12 14 16 18 2

once the director has begun to rotate towards the
magnetic field, then the distortion will begin to involve
some bend distortion and so the bend elastic constant
will have an effect on the rotation of the director with
increasing field. One would expect an increase in the
bend constant to reduce the rotation of the director with
increasing field. Figure 11 shows just such behaviour.
Having shown that the position of the splay transition
is unaffected by changes in the value of the bend elastic
constant, a further test is to show that the position of
the splay transition is affected by changes in the value
of the splay constant. Figure 12 shows that the position
of the transition is proportional to the square root of
the splay elastic constant as expected from equation (16).
Another test of the simulation was to determine what
effect lattice size has on the transition. The theory of the

Figure 11. Graph showing the 90 T I T
variation of 60,,., the director 80
angle at the mid-plane, versus B
magnetic field strength, deter- 70 F ks =0.1ky ¢
mined from the model. The five kaz = 0.5ky +
curves represent simulations @ 60 - kk33 22?3 O
run with the splay constant ® 50 | k3333=_10k8 2
fixed at k;, =k, and varying N
bend constant. It is clear that % 40
while the onset of the transition g
is unaltered by the variation of = 30 -
the bend constant, for fields 20 L
higher than the critical field,
Omax 1 strongly affected by the 10
value of the constant. If the \ | : .

bend constant is high then the
director is hindered from rota-
tion towards the magnetic field.
The simulations were run under
the same conditions as used
for figure 10.

0
6 02 04 06 08 1 1.2 14 16 18 2

NN
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Figure 12. Graph showing the 90 T
variation of 0, ., the director 80
angle at the mid-plane, versus
magnetic field strength in the 70
splay geometry. The three
curves represent simulations
run with the bend constant
fixed at k;;=k, and varying
splay constant. The position of 40
the transition changes as a
result of the different splay con- 30
stant. When the splay constant 20
is halved, the critical field is
multiplied by (;*)% whereas 10
when the splay constant is |
doubled the critical field is mul- 0
tiplied by 2%, The simulations
were run under the same condi-
tions as used for figure 10.

60 |-
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Ormaz /degrees

kll = 05k0
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Figure 13. Relationship between
the reciprocal of the critical
field and the separation of the
plates is a straight line. In the
graph, d is the lattice size minus
one and d, is the size of the 1
lattice cells, arbitrarily assigned

Jdov/ ()
1

L
H

the value of 1 unit of length. It 0

can be seen that down to very 0 2

small values of d the straight
line relationship is maintained.

Fréedericksz transition predicts that the critical field is
proportional to the reciprocal of the space between the
parallel plates. In the simulations here, this spacing is
proportional to the number of lattice cells minus one in
the direction with the fixed boundaries. Figure 13 shows
the variation of the critical field with the reciprocal
of the planar spacing. It can be seen that the straight
line behaviour is maintained down to simulations of just
3 cells! This behaviour is accounted for by the fact that
the onset of the transition is the point at which the
director in the mid-plane just starts to rotate away from
the monodomain alignment imposed by the boundary
cells. At this point the angle of rotation is very small
and so even for small lattice sizes the numerical
approximations hold good.

4. Simulation of the bulk
The technique has been used to study the evolution
of textures and how the shapes of the defects which are
present during the evolution vary with different elastic

4 6 8 10 12 14 16 18 20
d/do

constants. In particular, simulations have been run with
the elastic constants in the ratio thought to occur in
liquid crystalline polymers.

In order to probe the bulk, simulations have been
performed with periodic boundary conditions. If the
simulations are run for sufficient time then the micro-
structures will anneal to a monodomain with all the
directors lying at the same orientation. However, if the
simulations are stopped at an earlier time, then states
are found where all the high energy distortions have
annealed out leaving a network of disclinations. The
nature of the microstructure which is revealed depends
strongly on the elastic constants inserted into the
simulation.

In order to obtain quantitative information about
the nature of the defects which occur in simulations,
algorithms have been devised to analyse the data pro-
duced from simulations. Before presenting results from
simulations, a description of these ‘topological probes’
is included.
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4.1. Topological probes

The first probe used identifies 3 strength disclination
lines and is based on an algorithm derived by Zapotocky
et al. [10]. Their algorithm is two dimensional, but is
extended simply to three dimensions by repeating for
sets of four cells in the x-y plane, the y-z plane and the
z-x plane. In essence, the algorithm involves searching
around all sets of four cells forming a 2 X 2 square and
checking for a contained disclination. A disclination is
found if, when stepping around the set of four cells in a
clockwise direction, the director changes its orientation
by 180°. Figure 14 (a) shows an example of a strength 3
twist disclination contained by a set of four cells. Once
the location of the cores of disclinations have been
identified as a series of sorted points, then an attempt is
made to distinguish between wedge and twist dis-
clinations. The characteristic which distinguishes these
types of disclinations is the angle between the rotation
vector, Q, and the direction of the disclination line, L.
In this paper, this angle is termed the characteristic
angle of the disclination, . An approximate direction
for the rotation vector, which is the axis of the rotational
distortion around the disclination line [21, 221, is found
by adding the vector cross products formed from each
pair of the four directors surrounding the disclination
core. Given that the path of the disclination line has
been determined as a sorted sequence of points in three
dimensions, an approximation to the direction of the
line at any point may be taken as the vector from the
previous point along the line to the next point along
the line as shown in figure 14 (b). The angle between the

@ 9 ®
AN
I

Figure 14. (a) All sets of four cells forming a 2 X 2 square are
checked using the algorithm described by Zapotocky et al.
[10] to find disclinations. If a disclination is found then
the coordinates of the site are recorded. When a dis-
clination is found its rotation vector is determined by
taking the cross product of each pair of directors around
it and summing the resultant vectors. In the diagram, all
the directors lie in a plane and the rotation vector, €, is
the normal to this plane. (b) Having found the coordinates
of all the disclination sites, the sites are sorted such that
they form a continuous disclination line (or lines). The
direction of the line at any point is estimated by taking
the vector from the previous site along the line to the
next site along the line. In the diagram, the direction of
the disclination line at site B is taken to be the vector
from site A to site C. The character of the disclination
line at each site is determined by finding the angle between
the rotation vector and the direction of the line.

)

rotation vector, Q, and the disclination line, L, is found.
If the characteristic angle « is 0°, the disclination is pure
wedge in nature; if the angle o is 90°, then the disclination
is pure twist in nature; if the angle a is between these
values, then the disclination is of mixed nature. A
shortcoming of the current algorithm is that it is not
able to determine the sign of the disclination. This is
because the algorithm only finds the acute angle between
the direction of the disclination line and the rotation
vector. To distinguish between +3 and —3 wedge dis-
clinations it is necessary to determine whether the
rotation vector is parallel to the disclination line (+3)
or antiparallel to the disclination line (—3%).

A second probe identifies escaped strength 1 dis-
clination lines. This algorithm operates by considering
a two dimensional square circuit. The projection of the
directors onto the two dimensional plane are found and
as the circuit is traversed the total angle through which
the projected director varies is found. If this angle is
360°, then either an escaped strength 1 defect, or a pair
of strength 3 defects is contained within the circuit.
Various sizes of circuit may be used. If a 2 X 2 square
is used then strength 1 disclinations may not be distin-
guished from a monodomain. The smallest circuit which
can be used is a 3 X 3 square. Sizes up to 7 X 7 have
been considered, but the best results seem to be obtained
with a 4 X 4 circuit. If smaller circuits are used then not
all escaped lines are found. If larger circuits are used
then many circuits will find the same escaped line and
the location of the line cannot be determined with any
precision. Also, the likelihood of finding pairs of 3
strength disclinations of equal sign is higher for larger
circuits. The operation of the circuits is illustrated in
figure 15.

4.2. Simulation for equal constants

With equal elastic constants the microstructures look
similar to the simulation outputs from various other
techniques. Figure 16 shows a slice through a simulation
run for this condition. However, it is interesting to note
the presence of escaped strength — 1 lines which have
not in general been seen in earlier simulations, and
figure 17 shows an enlargement of the escaped — 1 line
shaded in figure 16. The occurrence of escaped — 1 lines
probably reflects the correct handling of splay-splay
compensation in the new algorithm, for such a line is
an example of a splay-splay compensated structure as
discussed in §2.3. Earlier numerical techniques will treat
this geometry as a high energy state rendering it less
likely to occur, while in this improved approach it
actually has zero energy down the centre. A fuller
treatment including the k,, term is required to determine
whether escaped —1 lines are really likely to prevail in
small molecule microstructures.
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Figure 15. To investigate the occurrence of escaped dis-

clination lines of unit strength, circuits are performed
around the projections of the directors onto the x-y plane,
the y-z plane and the z-x plane. In the diagram, both
circuits are around 3 X3 squares of cells. Circuit A
encloses an escaped strength + 1 disclination; when circuit
A is traversed, the orientation of the projection of the
director changes by 360°. Circuit B does not enclose a
defect; when circuit B is traversed the orientation of the
projection of the director remains unchanged. Circuits
may be performed around larger squares of cells, but it is
more than likely that an escaped strength 1 disclination
will be confused with two 3s of the same sign, and also
that the position of the axis of the defect will not be
known with as much precision.

J. Hobdell and A. Windle
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Figure 17. A close up of the escaped — 1 disclination line

highlighted in figure 16. Comparison with figure 3 con-
firms that the feature is indeed an escaped — 1 line and
that it is thus a region of splay—splay compensation.
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region.

The equal constants simulations show 3 strength dis-
clination lines which reduce in length as the simulations
proceed. The character of the disclinations is equally

portioned between wedge and twist types. To illustrate
the difference in character a colour coding has been
used. For those disclination lines with a characteristic
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angle of less than 30° between the line and the rotation
vector, implying a predominantly wedge type, the colour
blue is used; for disclinations with a characteristic angle
of greater than 60°, implying a predominantly twist type,
the colour red is used; for lines with a characteristic
angle of between 30° and 60°, implying a mixed type,
the colour green is used. Figure 18 shows a single 3
strength disclination line of varying character which
snakes its way through the periodic simulation box
and several escaped strength —1 lines. With periodic
boundary conditions, the simulation box tessellates and,
in fact, the sections of strength 3 line seen in the figure
are all sections of periodic copies of a single line which
forms a closed loop. This condition implies that sections
of the line will be experiencing the distortion fields
around other sections of the same line. The longest of
the escaped strength —1 lines clearly connects two
sections of the strength  line. Topologically, it is imposs-
ible for a disclination line to terminate within the bulk.
It may either close on itself to form a loop, terminate
on a surface or form a junction with another disclination
line. By performing computer simulations, it is possible
to examine what is occurring in the bulk far more readily
than in experiments. It is possible to look at the structure
of the disclinations at the junction between a strength 3
line and an escaped — 1 line. The longer of the strength
—1 lines in figure 18 does not meet the strength 3 line
at a convenient angle to the underlying lattice for
analysis, so one of the shorter sections is considered. It
is worth noting the fact that disclinations do not always
meet at convenient angles to the lattice of cells; this is

h—
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{ Z,
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Figure 18. A strength % disclination line, shown in colour,
with escaped — 1 lines, shown as black crosses, running
from one part of the 7 line to another. At points where
strength — 1 lines meet the strength % disclination line the
character of the disclination changes abruptly. The inter-
section indicated is examined in more detail in figure 19.
The results are from the same simulation as shown
in figure 16.
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Figure 19. A closer examination of y-z slices through the
same simulation as in figure 18 reveals a change in the
character of the strength 3 line from one side of an escaped
strength —1 line to the other. In the diagrams, the
strength T disclination is directed straight out of the page,
passing through slices 18, 19, 20, 21 and 22 in turn. The
escaped strength — 1 line (shaded) lies in the plane of the
diagrams in slice 20. As can be seen, the rotation vector
in slice 18 is in approximately the (— 1 0 1) direction, while
the rotation vector in slice 22 is in approximately the
(101) direction. Since the disclination line continues in
the positive x direction there is the implication of a change
in the character of the disclination line from one side of
the escaped —1 line to the other. (Figure 20 shows a
schematic of the situation viewed on the z-x plane.)

actually reassuring since it implies that the lattice is not
imposing special directions along the coordinate axes.
By stepping through the simulated volume one layer
at a time it is possible to observe the character of the 3
strength disclination line on either side of the junction
with the escaped strength —1 line. Figure 19 shows
three such layers, one to one side of the junction point,
one coincident with the junction and one to the other
side of the junction point. As the 3 strength line passes
the junction with the escaped —1 line, the rotation
vector changes direction suggesting a change in the
character of the 3 strength disclination line. Figure 20
shows a schematic of the way the rotation vector changes
from one side of the junction to the other. The Q vector
of the strength 3 disclination, and the distortion field,
associated with it, is rotated by = about the — 1 axis.

4.3. Varying the twist constant
Anisimov and Dzyaloshinskit [23] have deduced
that when the elastic constants are not equal, the type

Slice 18 19 20 21 22

Figure 20. A schematic showing the relationship between the
rotation vectors and the disclination line on either side of
the escaped —1 line shown in figure 19.
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of strength 3 disclination lines which are stable in
three dimensions depends on the values of the elastic
constants. They quote the following two cases:

if kyy >3(ky, + ky3), the planar wedge lines of strength
+ 1 are stable;

if ky <3(kj; +ky3), the twist lines of strength +3
are stable.

Simulations have been performed for both these
situations, with a high twist elastic constant and with a
low twist elastic constant. The disclination lines which
occur are very different in each case. For a low twist
elastic constant, as shown in figure 21 the disclinations
are predominantly twist (coloured red) in character. For
a high twist elastic constant, as shown in figure 22 the
disclinations are predominantly wedge (coloured blue)
in character. Both findings are in accord with the
theoretical predictions, although neither pure wedge is
eliminated for a low twist constant nor pure twist for
low splay/bend constants.

A more quantitative means of comparing the equal
constants simulations, the high twist and the low twist
constant simulations is to analyse the distribution of
characteristic angles of the disclinations which occur.
Figures 23(a) to 23(c) are histograms showing the
distribution of disclination types in simulations. It is
interesting to note that when the twist constant is low,
almost all the disclination lines are of twist character,
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Figure 21. Results from a simulation performed on a
30 X 30 X 30 lattice with periodic boundary conditions.
The simulation was run with a low twist constant,
ki =1, kyy =01, ky3=1, and =30; it was run for 40 000
Monte Carlo trials per cell.

Figure 22. Results from a simulation performed on a
30X 30 X 30 lattice with periodic boundary conditions.
The simulation was run with a high twist constant,
k;y=01, ky,=1, ky3=0-1, and B=230; it was run for
40 000 Monte Carlo trials per cell.

but that when the twist constant is high, there is a
broader distribution of types peaked at the wedge (0°)
end. This ‘skewing’ of the distribution represents the fact
that for a given rotation () vector, a wedge disclination
requires the line to be parallel to ©, whereas for a twist
disclination it is normal to © which provides many more
possible orientations.

4.4. High splay constant—the polymeric case

The primary goal of this work has been to model
microstructure in liquid crystalline polymers. In this
section, results from a simulation run with elastic con-
stants in the ratio thought to be reasonable for main-
chain thermotropic LCPs are presented. The elastic
constants used are in the ratio ky;:ky:ky;3=100:1:10
and a typical model is shown in figure 24 for 40 000
Monte Carlo trials per cell. Almost all of the disclinations
are twist in character. Figure 25 shows a slice through
the simulation after 5000 Monte Carlo trials per cell.
The microstructure is very different from the equal
constants simulation in §4.2. It is apparent that there is
considerable twist distortion present—-consistent with
the low twist constant inserted into the simulation. In
particular, the escaped strength 1 disclinations which
are observed in these simulations are most often of the
twist-escaped strength =+ 1 variety. Such structures have
zero splay distortion and so are indeed likely to be
favoured when the splay constant is high. Such twist-
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escaped lines are observed experimentally in liquid
crystalline polymers using fractography [14].

Another interesting feature of simulations run with
a high splay constant and low twist constant is the
tendency for layering to occur. Figure 26 is a section
which happens to show the layers clearly; they form
with twist distortion between the layers. It should be
stressed that although the structures are reminiscent of
cholesteric textures, there is no chirality present in the
free energy expression and the twist is equally likely to
be clockwise or anticlockwise. This layering occurs
because any deviation from the layer would involve
splay distortion which is prohibited by the high splay
constant. Within the layers there is bend distortion and
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Figure 24. Results from a simulation run on a 30X 30 X 30
lattice with periodic boundary conditions. The simulation
was run with elastic constants in the ratio thought to
occur in liquid crystalline polymers: k;; =100, k,,=1,
ky3=10. The value of g was set to 30 and the simulation
was run for 40 000 Monte Carlo trials per cell. As can be
seen, the disclinations are mainly twist in nature.

also associated splay. The layering would account for
the micaceous texture often seen in thermotropic LCPs
[24,25].

5. Summary
In this paper we have presented a numerical technique
for predicting microstructure in nematic liquid crystals.
It is an advance over previous techniques in that it
differentiates between the three distortions of splay, twist

Figure 23. Distribution of disclination types as characterized
by the angle between the disclination line and the rotation
vector. (a) For the simulation in figure 16: this simulation
was run with equal elastic constants. The disclinations are
predominantly of mixed character; there is no preference
for wedge or twist character disclinations for the situation
of equal elastic constants. The average characteristic angle
is 49°% the number of disclination sites is 432. (b) For the
simulation in figure 21: this simulation was run with a
very low twist elastic constants and the distribution shows
the majority of the disclinations had characteristic angles
above 45° indicating they are of twist or predominantly
twist character. The average characteristic angle is 73°
the number of disclination sites is 434. (¢) For the simu-
lation in figure 22: this simulation was run with a very
high twist elastic constant and the distribution shows the
majority of the disclinations had characteristic angles
below 45° indicating they are of wedge or predominantly
wedge character. The average characteristic angle is 37°
the number of disclination sites is 436.
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Figure 26. Part of another section remnenrneemeennee sy
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in figure 24 showing layering. s et

The simulations run with a high
splay constant and low twist
constant often show a degree
of layering with twist distortion
between the layers and little
registry from one layer to the
next. In order for the director
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to deviate from such a layered
structure it would have to
introduce splay distortion
which is highly unfavourable.

and bend and includes splay-splay compensation as a
natural consequence of the calculation of the divergence
of the director field in three dimensions.

The calculation of the splay, twist and bend energies
for a set of predefined geometries—the Poincaré point
singularities—agrees with analytical results. One of the
point defects in particular, the Col defect, has a region
of splay-splay compensation and the correct deter-
mination of the distortions for this case is evidence for
the inclusion of splay—splay compensation.

The technique may be used to find director fields
which minimize the Frank free energy for given boundary
conditions.

It is simple to include the effect of an aligning field
into simulations and with the inclusion of such a field
the Fréedericksz transition has been simulated. The
critical field is correctly predicted for each geometry and
the variation of the director with higher fields also agrees
with analytical theory.

The technique has been used to simulate the bulk by
imposing periodic boundary conditions. In this mode,
the global minimum will be a monodomain regardless
of the elastic constants applied. However, if simulations
are halted before the monodomain solution is found,
then networks of disclination lines are found. The
location and character of the lines has been determined
by the use of ‘topological probes’.

A number of situations have been considered: equal
elastic constants, high twist constant, low twist constant

and elastic constants in the ratio considered to occur in
liquid crystalline polymers. With equal elastic constants,
the character of the strength 3 disclinations seen in
simulations varies between the limiting case of pure
wedge type and pure twist type. With a low twist
constant, predominantly twist disclinations are seen
and with a high twist constant, predominantly wedge
disclinations.

Strength 1 disclination lines are topologically unstable
with respect to escape in the third dimension. Escaped
strength 1 defects are seen in all the simulations, but the
type of line varies dependent on the elastic constants.
With equal elastic constants the lines are escaped —1
lines. These may be unrealistically favoured since they
exhibit saddle-splay distortion which is not assigned an
energy in the simulations.

As stated earlier, the primary goal of this work has
been to simulate microstructure in liquid crystalline
polymers by applying elastic constants in the ratio
which occurs in these materials. Simulations have been
performed with the elastic constants in the ratio
kij:ky k33 =100:1:10. The following conclusions have
been drawn:

(a) Strength 3 disclination lines in liquid crystalline
polymers will be predominantly twist in character
as a result of the low twist elastic constant. This
conclusion is supported to some extent by recent
experimental studies by Gieger [26] who has
observed LCPs in shear flow.
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(b) Strength 1 disclination lines in liquid crystalline
polymers will be of the twist-escaped strength
=+ 1 variety. This conclusion is supported by the
fact that such structures are free of any splay
distortion which is prohibited by the high splay
constant. Experimental observation of fracture
surfaces by the authors [ 22] has revealed features
which are certainly consistent with twist-escaped
strength + 1 lines.

(c) A degree of layering as a consequence of the high
splay constant is predicted for liquid crystalline
polymer melts. Put another way, the layering which
gives rise to the micaceous fracture behaviour of
mouldings and is also apparent in the textures
[27] is seen as a direct consequence of the high
splay constant of the thermotropic polymer.

Further work is required to determine whether saddle-
splay distortion is important in liquid crystalline poly-
mers. The reason that the splay constant is high in
polymeric liquid crystals, the lack of chain ends, is not
applicable to the case of saddle-splay. For pure splay,
the only way a divergence can be supported without
violating a continuity of material is to have chain ends
(or molecular hairpins) to fill the gaps. However, if splay
on one plane is compensated by splay in the opposite
direction on a perpendicular plane then the problem of
the lack of chain ends is alleviated: any part of a chain
splaying in an opposite direction may fill the gaps due
to the splay on the perpendicular plane. It thus seems
reasonable to expect that the k,, or saddle-splay constant
will have a magnitude more like the twist constant,
which reflects only the reluctance of the chain units to
be misaligned, rather than the splay or bend constants
which are higher as a result of the length (few ends) and
comparative rigidity of mesomorphic molecules.
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